PHOSPHORUS-PHOSPHORUS SINGLE OR DOUBLE BOND FORMATION FROM $\mathrm{PCl}_{3-n} \mathrm{R}_{n}(n=1$ or 2$)$ AND A BIS-IMIDAZOLIDINE REDUCING AGENT

HAROLD GOLDWHITE*, JOHN KAMINSKI, GLENN MILLHAUSER, JESUS ORTIZ, MAURICE VARGAS, LAWRENCE VERTAL,
Department of Chemistry, California State University, Los Angeles CA 90032 (U.S.A.)

MICHAEL F. LAPPERT* and STEPHEN J. SMITH
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)
(Received February 21st, 1986)

Summary

$1,3,1^{\prime}, 3^{\prime}$-Tetraethyl-bis($2,2^{\prime}$-imidazolidene), $\mathrm{L}_{2}^{\mathrm{Et}}$ (I), is a mild homogeneous reducing agent which reduces $\mathrm{P}-\mathrm{Cl}$ bonds in phosphonous or phosphinous chlorides to give compounds with phosphorus-phosphorus bonds. High yields of diphosphines $\mathrm{P}_{2} \mathrm{R}_{4}$ are produced from the corresponding phosphinous chlorides (PClR_{2}). Phenyland t-butyl-phosphonous dichlorides are reduced to cyclopolyphosphines (PR) ${ }_{n}$, which appear to be the kinetically controlled products. 2,4,6-Tri(t-butyl)phenylphosphonous dichloride (PArCl_{2}) is reduced to either 1,2-dichloro-1,2-bis(2,4,6-tri-tbutylphenyl)diphosphine (PArCl$)_{2}$ or trans-bis[(2,4,6-tri-t-butyl)phenyl]diphosphene ($\mathrm{P}_{2} \mathrm{Ar}_{2}$) depending on the initial stoichiometry.

Introduction

Heterogeneous reduction of phosphinous halides $\left(\mathrm{PR}_{2} \mathrm{X}\right)$ to diphosphines $\left(\mathrm{P}_{2} \mathbf{R}_{4}\right)$ or of phosphonous dihalides ($\mathbf{P R X} X_{2}$) to cyclopolyphosphines (PR$)_{n}$ by metals is a sluggish reaction which needs high temperatures and long reaction times [1]. In contrast, the homogeneous reduction of a hindered phosphinous halide by a bis-imidazolidine $\left[=\mathrm{CN}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NR}\right]\left(\equiv \mathrm{L}_{2}^{\mathrm{R}}\right)$ to the persistent phosphinyl radical (PR_{2}), which is generally in equilibrium with its dimer, the diphosphine ($\mathrm{P}_{2} \mathrm{R}_{4}$), is rapid at room temperature when initiated photolytically [2,3]. Consequently, we decided to explore the synthetic utility of a bis-imidazolidine, such as I, as a reducing agent for phosphonous dihalides as well as less hindered phosphinous halides.

Results and discussion

Reductions of diarylphosphinous chlorides to the tetra-aryldiphosphines proceeded much more rapidly and under much milder conditions with the bis-imidazolidene (I) than with the metal reducing agents used previously [1]. The stoichiometry of the reaction was that shown in eq. 1 ($\mathrm{R}=$ aryl).

(I)

Photo-initiation was not required for the reactions reported here. The carbonium salt by-product precipitated out from the toluene solution during the reaction; hence, the mixture was easy to work up, and $\mathrm{P}_{2} \mathrm{R}_{4}$ was obtained in good yield (see Table 1). Since the reduction of hindered phosphinous chlorides by bis-imidazolidenes leads to phosphinyl radicals $[2,3]$, it seems likely that the present reactions also proceed via phosphinyl radicals ($\mathbf{P R}_{2}$), which dimerise to yield the diphosphines.

Reduction of t-butylphosphonous dichloride by the bis-imidazolidene (I) led cleanly to the cyclotetraphosphine $\left(\mathrm{PBu}^{\mathrm{t}}\right)_{4}$ as the sole product; this was also obtained by reduction of the dichloride by a metal [4].

Reduction of phenylphosphonous dichloride by zinc, in a slow thermal reaction, yielded the cyclopentaphosphine $(\mathrm{PPh})_{5}$ as the major product, together with smaller amounts of cyclotetraphosphine and cyclohexaphosphine [5]. It seems probable that this was the thermodynamic product mixture under these conditions. In contrast, we now report that bis-imidazolidene reduction of $\mathrm{PCl}_{2} \mathrm{Ph}$ gives a mixture of 55% of cyclotetraphosphine and 45% of cyclopentaphosphine, with no detectable cyclohexaphosphine. This mixture, obtained at ambient temperature under mild conditions, may be kinetically determined. It is possible that bis-imidazolidene reduction will prove to favour the formation of cyclopolyphosphines which are not as readily accessible by other reduction methods.

The preparation of phosphorus-phosphorus double-bonded compounds, diphosphenes, from $\mathrm{P}^{\mathrm{III}}$ precursors is a topic of current interest [9-15]. The work described below on the bis-imidazolidene reduction of PArCl_{2} helps to elucidate the mechanism of the reactions whereby a symmetrical diphosphene is prepared from a

TABLE 1
PREPARATION OF DIPHOSPHINES $\mathrm{P}_{2} \mathbf{R}_{\mathbf{4}}$ BY REACTION 1

R in $\mathrm{P}_{2} \mathrm{R}_{4}$	Yield (\%)	M.p. (lit.) $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{C}_{6} \mathrm{H}_{5}$	88	$120(121-122[6])$
$2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	73	$210-215(\mathrm{dec})$.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	57	$(200-215[7])$
$\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$	50	$47(48[4])$

SCHEME 1. Reaction sequence in the reduction 2,4,6-tri(t-butyl)phenylphonous dichloride PArCl_{2} (II) and the bis-imidazolidene $\mathrm{L}_{2}^{\mathrm{Et}}$ (1), and inoperative alternatives (via V).
phosphonous dichloride. 2,4,6-Tri-(t-butyl)phenylphosphonous dichloride, PArCl_{2} (II), was treated with $\mathrm{L}_{2}^{\mathrm{Et}}$ (I). The initial product was the 1,2-dichlorodiphosphine (III) together with a small amount of the diphosphene (IV). Use of a slight excess of I under more vigorous conditions gave only IV.

Thus, in the preparation of diphosphenes by reduction from phosphonous dichlorides there is unlikely to be a phosphinidene intermediate (V), as has been proposed [9]. Formation of the dichlorodiphosphine (III) is now demonstrated to occur along the pathway from II to IV. Compound III has not previously been observed because an excess of a dechlorinating/reducing agent has always been employed.

These data are summarised in Scheme 1. From earlier ESR experiments [11], it was demonstrated that the initial transient product of reduction of $\mathrm{PCl}_{2} \mathrm{Ar}$ by $\mathrm{L}_{2}^{\mathrm{Et}}$ is the radical $\dot{\mathrm{P} A r C l}$. It is now evident that PArCl dimerises to the diphosphine III; this radical, as well the analogous $\operatorname{PArX}\left(\mathrm{X}=\mathrm{OBu}^{t}, \mathrm{SPr}, \mathrm{SBu}^{t}, \mathrm{Cl}, \mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right.$, $\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$, Ar , or OAr], have previously been identified as products from $\mathrm{L}_{2}^{\mathrm{Et}}(\mathrm{I})$ and $\operatorname{PAr}(\mathrm{Cl}) \mathrm{X}$ [11].

Experimental

General procedures

Except where otherwise noted starting materials were commercial products (Aldrich, Strem, or Alfa), and were distilled or crystallised before use; their purities were checked by NMR spectroscopy. Proton NMR spectra were recorded with a Varian EM-60 or an EM-90 spectrometer; ${ }^{31} \mathrm{P}$ NMR spectra were recorded at 36.4 MHz with a Bruker HFX-10 spectrometer; positive values of δ correspond to resonances at low field relative to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at $\delta=0$. Reactions were run under argon in a Schlenk line. Solvents were dried over sodium and distilled under nitrogen.

Starting materials

A mixture of N, N-dimethylformamide dimethylacetal ($17.9 \mathrm{~g}, 20.0 \mathrm{~cm}^{3}, 151$ mmol) and N, N^{\prime}-diethylethylenediamine ($15.1 \mathrm{~g}, 18.3 \mathrm{~cm}^{3}, 130 \mathrm{mmol}$) in dry benzene was heated in a distillation vessel during 3 h to $110^{\circ} \mathrm{C}$ and the methanol/benzene azeotrope that was produced was collected. The vessel was cooled and the remaining benzene was removed in vacuo. The residue was distilled under vacuum to yield $1,3,1^{\prime}, 3^{\prime}$-tetraethyl-2,2'-bis(imidazolidene) (I) ($11.5 \mathrm{~g}, 70 \%$, b.p. $86-88^{\circ} \mathrm{C}$ at 3 Torr), which is sensitive to air and moisture; I is a low melting solid (m.p. $48^{\circ} \mathrm{C}$) [16], and is conveniently used in toluene solution.

Bromomesitylene ($19.9 \mathrm{~g}, 15.1 \mathrm{~cm}^{3}, 100 \mathrm{mmol}$) in diethyl ether ($30 \mathrm{~cm}^{3}$) was added slowly to n -butyllithium in hexane ($52 \mathrm{~cm}^{3}$ of a $2.53 \mathrm{~mol} \mathrm{dm}^{-3}$ solution; 130 mmol of $\mathrm{LiBu}^{\mathrm{n}}$) and the mixture was heated at reflux for 3 h . A copious deposit of crystalline mesityllithium was produced. The mixture was cooled to $0^{\circ} \mathrm{C}$ and phosphorus trichloride ($6.8 \mathrm{~g}, 4.36 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) in diethyl ether ($20 \mathrm{~cm}^{3}$) was slowly added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 h and then filtered. Vacuum distillation gave mesitylphosphonous dichloride $\left(1.5 \mathrm{~g}\right.$, b.p. $145-150^{\circ} \mathrm{C}$ at 2 Torr ; ${ }^{31} \mathrm{P}$ NMR: $\left.\delta 161 \mathrm{ppm}\right)$ and dimesitylphosphinous chloride ($4.8 \mathrm{~g}, 31 \%$, b.p. $180-185^{\circ} \mathrm{C}$ at 2 Torr; ${ }^{1} \mathrm{H}$ NMR (δ in ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 2.20 (s), $6-\mathrm{CH}_{3} ; 2.30[\mathrm{~d}, J(\mathrm{PH})$ $2.4 \mathrm{~Hz}], 2,4-\mathrm{CH}_{3} ; 6.8(\mathrm{~d}), 3,5-\mathrm{H}, J(\mathrm{PH}) 3.2 \mathrm{~Hz} ;{ }^{31} \mathrm{P}$ NMR, $\delta 76 \mathrm{ppm}$.

Diphosphines: general procedure

A solution of the bis-imidazolidene (1) ($0.60 \mathrm{mmol}, 20 \%$ excess) in toluene ($1 \mathrm{~cm}^{3}$) was added slowly at $0^{\circ} \mathrm{C}$ to a stirred solution of the phosphinous chloride (2.0 mmol) in toluene ($5 \mathrm{~cm}^{3}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , and then filtered. Toluene was evaporated from the filtrate in vacuo at room temperature to yield the diphosphine.

Tetra-t-butylcyclotetraphosphine

This was prepared by the above general procedure, starting from tbutylphosphonous dichloride (2.0 mmol) and the bis-imidazolidene (1) $(1.0 \mathrm{mmol})$ in toluene ($8 \mathrm{~cm}^{3}$). Examination of the product solution after filtration by ${ }^{31} \mathrm{P}$ NMR spectroscopy showed only one peak, at 62.9 ppm , characteristic of the cyclotetraphosphine (cf. [4]: $\delta 58 \mathrm{ppm}$); this compound was isolated in 57% yield.

Phenylcyclopolyphosphines

Reaction between phenylphosphonous dichloride (2.0 mmol) and the bis-imidazolidene (I) (1.0 mmol) in toluene ($8 \mathrm{~cm}^{3}$) was carried out by the above general procedure. Examination of the product solution after filtration by ${ }^{31} P$ NMR spectroscopy showed peaks only at 9.9 ppm (singlet; integrated area, 55% of total signal) attributed to the cyclotetraphosphine (cf. [5] $\delta 9.0 \mathrm{ppm}$), and at 5.1 ppm (complex multiplet, 45% of signal) attributed to the cyclopentaphosphine (cf. [17] δ 4.7 ppm) [7]. The isolated yield of the combined cyclopolyphosphines was 72%.

1,2-Dichloro-1,2-bis(2,4,6-tri-t-butylphenyl)diphosphine and trans-bis(2,4,6-tri-t-butylphenyl)diphosphene

A solution of the bis-imidazolidene (I) $(0.23 \mathrm{~g}, 0.90 \mathrm{mmol})$ in toluene ($10 \mathrm{~cm}^{3}$) was added dropwise to $2,4,6$-tri-t-butylphenylphosphonous dichloride [9] (1.17 g , 3.37 mmol) in toluene ($20 \mathrm{~cm}^{3}$). A white flocculent precipitate was immediately
formed and the solution became yellow. After 2 h stirring the precipitate was filtered off and the solvent removed from the filtrate in vacuo at room temperature. Examination of the residue by ${ }^{31} \mathrm{P}$ NMR spectroscopy showed it to be the almost pure diphosphine ($\delta 75.7 \mathrm{ppm}$) containing a little diphosphene ($\delta 494 \mathrm{ppm}$).

The diphosphene was formed quantitatively (${ }^{31} \mathrm{P}$ NMR) when an excess of the bis-imidazolidene (I) (ca. 10\%) was used, and the mixture refluxed for 1 h .

Acknowledgement

We thank the National Institutes of Health for grants under the Minorities Biomedical Research Support Program and the Minorities Access to Research Careers Program; NATO for a grant under its Scientific Research Program, and S.E.R.C. for a studentship (to S.J.S.).

References

1 H. Heydt and M. Regitz in M. Regitz (Ed.), Houben-Weyl, El, Phosphorverbindungen 1, Georg Thieme Verlag, Stuttgart, 1982, pp. 191-192.
2 M.J.S. Gynane, A. Hudson, M.F. Lappert, P.P. Power, and H. Goldwhite, J. Chem. Soc., Chem. Commun., (1976) 623.
3 M.J.S. Gynane, A. Hudson, M.F. Lappert, P.P. Power, and H. Goldwhite, J. Chem. Soc., Dalton Trans., (1980) 2428.
4 K. Issleib and M. Hoffmann, Chem. Ber., 99 (1966) 1320.
5 W.A. Henderson, M. Epstein, and F.S. Seichter, J. Am. Chem. Soc., 85 (1963) 2462.
6 W. Kuchen and W. Grunewald, Chem. Ber., 98 (1965) 480.
7 B.I. Stepanov, E.N. Karpova, and A.I. Bokanova, Zh. Obshch. Khim., 39 (1969) 1544.
8 K. Issleib and W. Seidel, Chem. Ber., 92 (1959) 2681.
9 M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, and T. Higuchi, J. Am. Chem. Soc., 103 (1981) 4587.
10 B. Cetinkaya, P.B. Hitchcock, M.F. Lappert, A.J. Thorne, and H. Goldwhite, J. Chem. Soc., Chem. Commun., (1982) 691.
11 B. Cetinkaya, A. Hudson, M.F. Lappert, and H. Goldwhite, J. Chem. Soc., Chem. Commun., (1982) 609.

12 A.H. Cowley, J.E. Kilduff, T.H. Newman, and M. Pakulski, J. Am. Chem. Soc., 104 (1982) 5820.
13 G. Bertrand, C. Couret, J. Escudié, S. Majid, and J.-P. Majoral, Tetrahedron Lett., (1982) 3567.
14 C. Couret, J. Escudié, and J. Satgé, Tetrahedron Lett., (1982) 4941.
15 A.H. Cowley, Acc. Chem. Res., 17 (1984) 386; Polyhedron, 3 (1984) 389.
16 H.E. Winberg, U.S.P. 3,361,757; Chem. Abs. 69 (1968) 19155a.
17 L.R. Smith and J.L. Mills, J. Chem. Soc., Chem. Commun., (1974) 808.

